Results of the 2024 CQ WW RTTY Contest

By Chris Tate N6WM

Solar peak conditions continue to define contesting with great propagation and big scores. This run of the CQWW RTTY contest was no exception, delivering a great playing field for RTTY operators around the world to compete in the largest of all RTTY contests in amateur radio. There were 3,431 entries, slightly higher than last year, and a couple hundred logs below the peak in 2020 during Covid.

"Great year! 10,15, 20 all open to EU and SA for extended periods, best conditions in a lot of years." – Charlie, AC7JW

			Cont	inent				
Metric	AF	AS	EU	NA	OC	SA	ALL	2023
Logs	18	362	1,778	1,019	115	139	3,431	3,357
Operators	29	388	2,107	1,145	126	160	3,955	3,800
DXCC	9	24	55	17	6	13	124	122
Zones	4	10	3	9	6	5	37	36
States &			_	58			58	55
Provinces				50			58	55
		Reported	QSOs By Bai	nd (Post Lo	og Checking	g)		
80M	744	1,093	56,799	18,705	16	35	77,392	75,374
40M	2,730	7,056	132,161	61,088	940	1,305	205,280	211,439
20M	5,461	14,314	181,246	95,648	4,577	9,204	310,450	316,829
15M	6,419	33,915	175,024	134,940	7,551	14,260	372,109	362,844
10M	9,656	42,463	127,466	113,381	8,962	26,124	328,052	214,187
A11	25,010	98,841	672,696	423,762	22,046	50,928	1,293,283	1,180,673
			Average I	Productivty	1			
QSOs/Log	1,389	273	378	416	192	366	377	352
QSOs/Opr	862	255	319	370	175	318	327	311

Table 1 – 2024 CQ WW RTTY Statistics by Continent

"I am very happy with the results of this year, every year I try to give the best I can but this year I have dedicated a little more effort and the propagation has helped more." --Francis, EA3FZT

Francis EA3FZT operated as EF3T taking home the European Single Operator Low Power trophy

Let's take a look at some of the notable races on the bands along with some stories and records.

Single Operator All Bands High Power

Manu LU9ESD operating the Maine superstation K1LZ took top honors in the SOAB HP category, producing an new category North American record and besting a valiant effort by Randy K5ZD. This original category that allows no spotting assistance requires lots of agility and strategy to track down multipliers across the bands. Bringing up the third position was Yuri VE3DZ in Ontario Canada who set a new Canada record in this category. The European winner was Milos S53X with an overall 6th place position. The South American winner was ZY2N operated by Wanderly PY2MNL in Brazil in the 4th position worldwide.

Single Operator All Bands HP Assisted

Serge M0SDX had a commanding world record breaking win in the high power assisted category, operating as P3X from Cyprus. Pulling in on top of a horse race for second position was Victor UR5MW operating as UW1M, with Bud AA3B in PA USA also cracking the 7 million point mark handing and the USA win. This is a very competitive category as it seems RTTY operators are more willing to use spotting assistance to track down elusive multipliers.

Congratulations to the stations achieving Overall All-band World Records in 2024

P3X(M0SDX op) Single Operator All Band Assisted High Power

CR3DX – Multi Operator two transmitter

IQ6AN-Mult-Single lower power

RG4A – Classic Low Power

Single Operator All Bands Low Power

Andy UB7K had an overwhelming performance taking top SOAB LP honors with 3 times the score of second position Portuguese station Mike CT7BJG who very narrowly pushed Guilherme PY2UD into 3rd position. The top North American finisher was Eric VE6BBP in Alberta at 6th overall. The top US station was Fred KG9X in 8th overall.

RTTY contesting stories -- Wine and RTTY? Why not!

Is there a correlation between Vintners and RTTY? One cannot deny the possibility. CQ WW RTTY Contest Director W0YK maintains the excellent Muns vineyard at his Northern California QTH. Jeff WK6I, the top RTTY operator at Nevada superstation W7RN has produced quite a bit of wine as well - also from Northern CA. (editors note, WK6I is the club trustee of call WI6NE.) In this case, Dimitri F4DSK shared the CQ WW RTTY contest operation with his Sancerre harvest in France and despite all that work n the vineyard still managed the top Low power position in the contest.

"Like last year, the contest fell during the harvest in our area (PDO Sancerre). So I had to prepare for the contest earlier and the mental preparation was a little bit distracted by the work which took me 12 to 14 hours per day (including the day before the contest).

To achieve my goal, like last year, I decided to focus on hunting the multipliers and 3-points QSOs. When you are in the assisted low power category, from Europe, the QSO rate is often better doing S&P --> thanks to the skimmers. In this case S&P can be called C&S : "Click & Shoot" and it represents about 80% of the QSOs in my log on the high bands and 40% on the low bands.

I'm always surprised how easy it is to work many European countries via backscatter on 15 & 10 m, this allows the number of mults to significantly increase ; sometimes I had to wait until the wall of US stations was calmer and come back later. And..., once the contest was over, the harvest resumed after 3 hours of sleep..." –Dimitri F4DSK operating as TM3Z

Dimitri F4DSK taking a break from his wine harvest to work the CQWW RTTY contest from TM3Z

Single Operator Low Power Assisted

Dimitri F4DSK operating as TM3Z took top honors in the low power category with a solid lead over second place in EU and overall EE4Y (Pablo EA4GOY op). Bringing in the 3rd position overall and top honors for the US was Rick KI1G out of Rhode Island.

More Categories

One of the great advantages of CQ contests are the various subcategories such as Rookie, Classic, Triband Wires, and Youth, as well as Single Band categories that are hugely popular that allow for a wide range of competitions. I'll mention a couple here, but please make sure you check the results and records tables to see all the great competitions in these categories.

Congratulations to the following single band and overlay world record achievements

D4L(IK2NCJ op) – Single operator Single Band High power 10 meters

FY5KE (F5UII op) – Single operator Single Band Assisted 15 meters

OM2ADM- Rookie Low Power

	Continent							Average	per Entry	
2024 Category	AF	AS	EU	NA	OC	SA	A11	Op Time (Hours)	Score Reduction	A11 2023
			High	Power (Overlay	Entrie	s			
Classic	2	17	42	42	4	2	109	15	10%	140
Rookie	0	0	5	1	3	0	9	15	9%	10
Youth	0	0	3	1	0	0	4	12	10%	11
		Low	Power O	verlay	Entries	(Inclu	des QRP)		
Classic	2	24	193	107	12	16	354	12	11%	357
Rookie	0	2	27	9	0	4	42	11	10%	42
Youth	0	1	8	5	1	0	15	13	8%	20

Overlay entry statistics

Classic High Power

The Classic overlay continues to become more competitive as its short format makes it attractive for those who have difficulty with full-time chair commitments.

Anton EA8BW operating as ED8M took advantage of his Canary Island location in North Africa to

nudge ahead in a close race with Robert KI6DY in Ohio who will take the US win in category

Classic Low Power

Dirk ON4CT narrowly bested Luis EA3CI for the top low power spot. Fred KG9X also entered this overlay so takes the top NA position, with Peter VA1XH taking top Canadian honors and 4th overall.

A rookie with a good run!

18 year old Adam OM2ADM participated in this contest for the first time, and what a start he had! He was operating the well-equipped Slovak Republic OM8A station and was able to take top low power Rookie honors, set a new rookie world record as well as landing 6th place in the world for Low power assisted! We welcome Adam to the CQWW RTTY contest community and congratulate him on a great start!

18 y/o Adam OM2ADM Low power Rookie overlay winner

Single Operator All Bands QRP

Solar peaks can have a dramatic impact on scores in this category, and since we are riding high on the cycle 25 wave, we have had some good finishes in this category.

The first-place world win goes to Dave K2YG. Not a huge surprise as he is a QRP RTTY enthusiast and has a large DXCC tally and has even worked 165 countries with 1 watt! Second place goes to EE3O operated by another digital QRP enthusiast, Santi EA3O.

Single Operator All Band Assisted QRP

In a great showing of both great operating and taking advantage of Solar Peak conditions, Arvydas LY2F delivered a dominating performance in the assisted QRP category achieving a 1.6 Million point score, 1.2 million higher than second place station Agustin EA2AZ. Top US honors go to Jim W7RY out of MO.

Multi-Operators

The battle of the RTTY superstations has logs of familiar calls. Multi-op RTTY contesting strategy has a somewhat different dynamic than single-op at the competitive level, where replacing multiband SOxR is typically done with many operators and use of in-band stations are used to produce monster scores.

	l	Continent						Average per Entry	
2024 Category	AF	AS	EU	NA	ос	SA	A11	Op Time (Hours)	Score Reduction
Multi-Single HP	0	2	31	11	2	4	50	32	11%
Multi-Single LP	0	4	25	9	0	2	40	26	12%
Multi-Two	1	1	15	8	2	0	27	38	9%
Multi-Multi	1	2	7	5	1	1	17	40	10%
Explorer-Multi	0	0	4	0	0	0	4	33	15%

Multi-operator Entry Statistics by Continent

Multi-Multi

Leading the pack in this category at their "perfect for contesting" Madeira QTH was CR3W, one of two Madeira stations to enter in different Multi-op categories. Their nearly 15m point score was enough to edge out familiar Croatian station 9A1A. The top North American station was once again achieved by team K1SFA operating the MA superstation K1TTT, a great team, QTH and station with a history of success in CQWW RTTY.

Multi-Operator Two-Transmitters

Multi-Two is arguably one of the most competitive multi-op categories in the contest. Many impressive stations enter. On top with a world record breaking performance was CR3DX, the second Madeira zone 33 station team to enter from the Island, both of which won their categories. They were a full 7 M points ahead of second place team EI7M in Ireland. Top North American honors go to team NJ4P who's now mature station in TN is competing head-to-head successfully with US Multi-two mainstay station owned by Craig K9CT, in this case a nail biter win for NJ4P by just 400k, a narrow win with both stations well over 8M pts.

Multi-Single

This category is broken out into High Power and Low Power categories.

Mult-Single High Power

The IP4M contest team won an Italian shootout for first place, beating Second position IB9T in Sicily by less than a Million pts. Top North American honors go to Val and the familiar team NV9L with just under 4 million points.

Multi-Single Low Power

The low power category was narrowly won and world record achieved by another Italian contest group, IQ6AN, in an extremely tight race with Puerto Rican station owned by Paul NP3Y. This was a very close race. Top North American honors go to Ontario effort spearheaded by Rudy VE3EID, and USA winning team lead by Mike KA4RRU.

Club competition

The Bavarian contest club once again took the overall world club competition title with 114 logs submitted, besting the Italian DX club who submitted 127 logs.

In the United States, the Potomac Valley Radio Club took top club honors, PVRC submitted 73 logs nearly double that of second place Yankee Clipper Contest club

In Closing

We are riding at the peak of the solar cycle right now, and with it, the fun factor on the bands have really kicked into high gear. These conditions should persist for next year's contest as well, so we can look forward to great participation and conditions once again!

Love RTTY? Love this contest? Sponsor a plaque in the largest RTTY contest in the word!

Winning a plaque in a CQ WW contest is a great achievement, and often times are some of the most coveted awards that one can hang on their shack wall. The opportunity to sponsor plaques is available, and can be great ways to establish regional excellence, or recognize a particular annual competition.

We would like to encourage you to review the plaques awarded in this competition and reach out to the management team if you would like to sponsor on in the future. Rich N1IXF runs this program and can work with you to establish a plaque for your zone for instance, a region of the US, a specific competition and more. If you would like to do this, feel free to contact him via the WPX RTTY Website.

Help us Make your results article more interesting!

We need photos of your efforts! We need your unique stories. A picture speaks a thousand words, and your words enhance them exponentially, tell YOUR stories, and enhance our coverage of this major worldwide RTTY competition. Please keep that in mind as you roll into these contests.

Pictures of operators or teams of operators are the best. Send us yours for a chance to get it published in the WW0RF CQ contest results publication.

For the entire CQ Worldwide RTTY management Team, congratulations to all participants and we look forward to working you in next year's run!

Ed W0YK
Rich N1IXF
Chris N6WM

Results 2024 CQ WW RTTY Contest

Band Breakdowns of Top Scorers

WORLD SINGLE OPERATOR ALL BANDS

K1LZ	288/11/36/39	741/22/67/49	962/30/75/51	1190/31/79/49	1060/27/75/39
K5ZD	272/11/32/39	713/22/63/50	828/27/72/51	1070/29/74/46	722/28/81/34
*UB7K		509/20/57/33	642/30/83/48	924/30/82/49	655/30/72/46
VE3DZ	274/11/33/41	374/14/41/50	560/24/68/49	883/24/75/44	521/27/70/23
ZY2N	6/4/4/4	120/14/39/16	414/20/50/44	542/24/60/45	1042/23/71/48
PZ5RA	0/0/0/0	108/11/32/22	379/17/53/43	572/23/61/46	968/28/75/53
S53X		311/16/55/21	463/26/71/41	503/26/61/48	328/26/46/47
ED8M	61/9/20/15	316/13/45/37	479/22/60/41	347/18/49/39	485/20/62/44
AC0C		217/12/32/34	255/20/47/42	749/25/70/40	603/22/66/34
KI6DY		252/12/38/43	455/19/49/53	484/23/60/34	457/17/56/16

WORLD SINGLE OPERATOR ASSISTED ALL BANDS P3X.....229/10/47/5 633/24/72/40 1227/33/92/57 1214/32/88/56 1171/32/91/47 122//33/32/34/52 886/26/85/38 1368/31/87/54 952/34/94/47 835/24/74/54 1007/29/83/57 922/31/89/51 894/29/92/38 SP8R.....252/14/56/20 610/30/86/51 849/34/100/57 874/33/97/57 597/36/93/53 IP4X.....154/11/53/18 559/29/83/48 802/33/94/59 927/34/96/58 618/36/94/58 435/25/66/56 559/31/77/58 746/33/91/59 909/35/98/56 686/24/77/49 599/34/98/57 567/34/92/58 404/36/90/58

WORLD MULTI-OPERATOR SINGLE-TRANSMITTER#

709/32/89/50

639/31/85/54

667/33/90/52

660/31/89/47

419/34/87/48

337/35/83/40

548/26/75/51

721/31/81/54

691/32/89/45

IP4M	 511/28/77/54	758/34/94/57	901/34/96/57	740/37/99/57
*IQ6AN	 671/30/86/48	836/34/99/56	735/34/94/56	547/35/89/58
*NP3Y	 416/23/75/54	789/31/87/58	698/31/90/59	1020/31/90/57
IB9T	 474/26/77/45	781/33/97/58	881/33/97/57	682/37/102/55
OK5Z	 415/27/79/48	721/34/101/59	739/34/94/58	630/38/96/59
OK7O	 437/26/78/49	496/34/96/55	845/34/95/58	675/38/97/56
S51A	 613/27/75/46	629/32/92/51	490/33/84/56	447/34/88/53
IB9R	 406/25/72/32	730/33/95/57	669/34/91/55	418/35/93/53
NV9L	 225/21/58/43	494/30/75/51	812/32/87/41	856/29/86/42
NA7TB	 425/28/66/52	511/31/79/55	628/32/90/59	731/33/91/55

479/21/66/54

328/22/64/38

WORLD MULTI-OPERATOR TWO-TRANSMITTER#

CR3DX	 1030/25/77/56	1549/34/99/59	2022/34/103/58	2166/35/107/59
EI7M	 816/24/76/55	1224/33/95/59	1435/34/97/59	1131/37/100/57
NJ4P	 934/27/75/55	1252/32/89/58	1286/34/101/58	1072/36/103/52
K9CT	 883/27/75/56	1087/33/92/55	1292/33/99/52	1100/34/98/52
PI4COM	 760/30/83/51	815/34/96/58	1016/34/96/56	724/35/97/55
UW5Y	 719/26/78/46	1088/31/87/58	951/31/93/58	634/34/83/49
ED2Y	 672/24/71/46	932/31/83/59	947/33/88/56	750/32/85/55
OH5Z	 694/30/83/33	1000/34/94/50	1047/33/99/51	395/36/90/42
DQ2C	 644/26/79/47	691/32/92/56	777/34/83/56	486/34/81/56
S50W	 723/25/72/40	722/34/84/54	768/34/88/55	500/33/81/51

WORLD MULTI-OPERATOR MULTI-TRANSMITTER#

CR3W	 854/27/76/52	1695/34/100/59	1848/33/102/57	1488/34/99/58
9A1A	 1374/32/93/51	1764/34/102/58	1369/34/98/57	864/38/103/58
IQ9RG	 866/30/86/46	1756/34/100/59	1216/30/89/54	890/33/95/58
K1SFA	 748/24/73/55	1083/31/89/57	1408/33/97/53	1241/32/99/49
DP9A	 822/30/85/47	1175/34/100/50	1020/33/92/57	693/36/97/56
A60A	 177/18/59/17	594/29/84/42	822/31/91/46	1006/32/92/40
PI4CC	 454/18/56/43	729/31/88/47	683/31/73/52	495/33/80/52
W3GH	 601/20/61/50	714/27/71/52	899/28/78/44	614/27/83/35
DM4X	 471/27/75/46	445/32/84/49	637/33/91/55	450/35/84/54
NGWM	 365/30/57/51	550/25/62/50	1001/28/76/50	840/32/78/45

Tables show callsign, QSO, zones, countries, and states for each band.

K3MM.....253/11/37/41

SN7Q.....214/11/46/16

Top Scores – WORLD

SINGLE OPERATOR HIGH POWER

All Bands

K1LZ	(LU9ESD)	6,853,720
K5ZD		5,828,855
VE3DZ.		3,950,100
ZY2N	(PY2MNL)	2,855,648
PZ5RA.		2,737,136
S53X		2,231,485
ED8M	(EA8BW)	2,073,812
ACOC.		2,063,419
KI6DY.		1,941,271
YT3D.		1,885,000

28 MHz

20 1812
D4L (IK2NCJ)
VK9DX641,258
LT3E (LU5DF)
G8X (G4FJK)440,328
DL3BQA406,912
UN3M207,045
YT8A (YU1EA)200,880
I7CSB168,300
UA0SR139,072
JH6WDG137,610

21 MHz

MW7C (M5RIC)	
SN5X (SP5GRM)	
KU2M460,638	
S51MM458,326	
7S2A (SA2SAA)	
PY2QT	
JA6ZPR (JR6CKX)268,926	
JR3RIY211,110	
TM5T (F5VKT)201,478	
G9D (G6NHU)164,578	

14 MHz

HK1T
WQ500 (N800)675,154
CE1KV182,347
NB2P162,316
VK4AFU64,400
VJ30 (VK3TX)
JA9CWJ
TA4A
JA7LLL
SQ9DXT24,566

7 MHz

DM3W (DM6DX)294,354
S51CK265,926
IKOREP160,425
ED8W (EA8DO)153,870
XE2X129,027
I5WNN
JH3FUK54,540
IZ2BVC
IK1BPL35,584
LA0GE27,404

3.5 MHz

ME5W66,744	
OK1DX54,717	
4L2M28,294	
ES8GP15,552	
JE20TM	
JA5NSR	

LOW POWER

All Bands

UB7K 4,280,980
CT7BJG 1,481,844
PY2UD 1,461,978
EF3T (EA3FZT) 1,217,700
ON4CT 1,124,848
VE6BBP 1,086,886
EA3CI 1,020,513
KG9X 980,287
NG1M 922,208
JS10YN 911,923

28 MHz

EA8DED (OH2BP) 691,548
PY2CX 243,586
JH6WHN 230,078
KH6ZM 168,861
E25KAE 152,418
VU2IBI 137,520
JK6DXD 114,924
R4KB 113,390
4M1F (YV1JGT) 108,206
JF3IYW/2 107,755

21 MHz

EA8KR 770,224
AI60 424,767
WP4WW (KP4JRS) 289,289
KH6AQ 269,516
M1B (G1YBB) 235,814
J35X 220,668
VA3SP 154,602
UT7W (UR5WCW) 149,495
PY1KV 124,866
LZ3QE 122,733

14 MHz

СТЗНУ 326,172
VO2VC 220,220
IP9P 212,268
SX8AS (SV3SKM) 151,905
W1QK 143,002
UT5EPP 141,048
PY2NY 137,195
YO9BCM 117,327
SN6S (SP6ZC) 115,625
VA7KO 109,998

7 MHz

F1DHX (@F6KNB) 284,970
G4N (G4ZVB) 176,440
LZ1MC 141,120
IW1PNJ 131,289
G4SJX 91,180
DL1AIW 72,072
ON3UN 58,880
CO2JD 50,400
SV1CDN 46,125
YO6BGT 35,478

3.5 MHz

F5BEG 56,140
I3PXN 45,322
OK2HBR 29,350
ER3PM 23,406
EA3MR 18,877
E79D 10,840
DL8MKG 7,360
CT1BWU 6,660
DAOT (DL7AT) 5,810
I4JEE 544

QRP

All Band

K2YG730,000)
EE30 (EA30)476,721	L
DL3SYA356,350	5
EA6/DK9IP (DK9IP)314,875	5
HG6C (HA6IAM)269,280)
GM5LOW (GM4UBJ)255,068	3
YL3FW)
WA3LXD215,445	5
JH7UJU194,788	3
DL5CV179,872	2

28 MHz

N8URE
VA3RTG
CO6EC
SP4NKJ18,876
LY5G18,288
IZ2JPN16,940
JA6VZB15,960
KZ5DX (K2FF)11,842
YD1IKE4,760
G5D (M1EYP)4,346

21 MHz

JA6GCE	 	 	 	 .137,	,768
EA4IE.	 	 	 	 92,	,230
SP4LVK	 	 	 	 44	,717
SP4LO.	 	 	 	 41,	,552
EA7JTP	 	 	 	 32,	,494
IV3LNQ.	 	 	 	 31,	,789
YO3DAC	 	 	 	 29,	,960
JR2EKD	 	 	 	 20,	,513
CO2AJ.	 	 	 	 19,	,656
JR1NKN	 	 	 	 19	,430

14 MHz

YU1NR
SQ4CTS
AA5KD27,209
SP4NKK24,412
JM1NKT21,920
SQ8W20,726
RZ3Z/P18,780
EW8G17,110
YF3AWZ15,678
SV9/DL2TM6,678

7 MHz

YO4BEW	052
OK6K (OK5IM)19,5	544
IZ4AIF	115
JH3DMQ1,5	525
DK1RF1,(027
EF5U (EA5U)	192

3.5 MHz%

ON3DI.		 									2	6,	2	80
YO9RYI		 										1,	0	81
VE3LDE	•	 			•			•					. 2	42
YF3AKQ	•	 			•		•	•						.2

SINGLE OPERATOR ASSISTED HIGH POWER

All Bands

P3X (MOSDX)9,283,362
UW1M (UR5MW)7,797,640
AA3B7,080,047
SP8R (SQ9UM)6,412,633
IP4X (IT9RGY)6,188,388
ZF2SS (K07SS)5,165,404
K3MM4,614,480
SN7Q (SP7GIQ)4,058,262
YO9HP3,924,854
OR3A (ON6CC)3,560,400

28 MHz

PX2A	(PY2XV)		1 002 980
11211	(112110).	 	. 1,002,000
9A5Y	(9A7DX).	 	628,430
V55Y	(V51WH).	 	605,675
SN2M	(SP2XF).	 	565,212
YT1X.		 	520,666
IK2TD	м	 	478,210
N6SS.		 	446,405
IB9U	(IT9XTP)	 	417,972
OM5ZW		 	379,435
JH3AI	u	 	377,484

21 MHz

FY5KE (F5UII)1,035,368
9A5D (9A5DU)
OG66X (OH8WW)496,248
EC1A
K4EA475,066
N7AT (K8IA)443,344
LZ4AE437,040
AA5AU411,700
\$53F411,070
M7W (G3TBK)

14 MHz

IP1M (IZ1LBG)	
YT3X760,480	
F6PTT (F4DVX @F6KNB)714,722	
IZ1PKV417,200	
OH8A (OH8GDU)	
RA9AU229,812	
HA8BE193,120	
EA7KP137,335	
WW4LL	
GW4BKG119,769	

7 MHz

\$52X415,702
GW0A (GW4SKA)
NA3M289,456
G7SLP (A65DR)248,196
SV2JAO193,316
S51J184,960
MM1E (MM0GOR)
OE5TXF (G3TXF)95,127
IO3X (IV3JCC)
IZ3GFZ57,665

3.5 MHz

HA1TJ156,946	
IK1HJS118,464	
LX5M (LX1ER)108,948	
S56AS102,680	
OL7P (OK1CRM)47,296	
IV3RYP41,990	
SV2BFN	
LZ2XA19,239	
ON4TTT16,744	
II1Y (IU1JCZ)10,488	

LOW POWER%

All Bands

TM3Z	(F4DSK)	.5,031,453
EE4Y	(EA4GOY)	.3,540,037
KI1G.		.2,778,633
UT4LW		.2,549,088
DJ4MX		.2,285,852
OM2AD	Μ	.2,265,165
PA40.		.2,141,490

VE2CSI	м							•	1,	756,	708
MW9W	(GW)KR	L)						1,	452,	939
OK2WY									1,	384,	614

28 MHz

AZ1D (LU4DJB) 434,668
PY1FI 423,168
PU2VLW 399,630
EE4M (EA4HPY) 322,737
T77CX (IK4DCX) 238,368
V260C (N30C) 228,240
EA1ACP 223,602
UN6LN 220,748
5B4AIF (5B4AIE) 176,601
PY2XC 173,610

21 MHz

YL1ZF 487,506	
PY1ZV 269,120	
HA8TKS 264,264	
IT9STX 249,789	
SV2AEL 241,740	
9A1CCY (9A3BBF) 224,230	
R9YU 190,800	
PU2UAF 163,346	
UA3PI 143,696	
G9F (G4BVY) 108,240	

14 MHz

LZ6DX 364,080
IZ8EFD 303,525
M5P (M5BIR) 265,149
IW2MXY 212,520
EA5XA 102,486
PY4XX 82,360
ЕАЗАКА 71,910
M4N (G4IZZ) 71,609
IZ3IBL 69,300
LU1HLH 67,266

7 MHz

G3WW 189,696
UZ1WW 160,230
YT9VM 128,838
WA1FCN 111,315
HA6NL 96,138
E7AA (E7OY) 95,942
Z35Z 88,815
DL4ME 78,376
SV3FUP 51,543
EA3IAZ 49,612

3.5 MHz

DF1MM	57,510
II4C (IK4RVG)	48,360
SP1D	46,252
HA8WY	35,136
EW8KO	23,192
VA3FF	17,043
IT9RZU	16,944
YL2KF	. 3,306

QRP

All Band

LY2F 1,650,380
EA2AZ 432,411
W7RY 289,114
PY2PLL 212,420
YU1LM 191,499
M7WLT 180,978
JA4XHF/3 157,941
UN8PT 157,297
PE2K 153,408
IZ3NVR 137,760

28 MHz

20 MIZ
JA6WFM 111,683
VA3UAP 50,964
G3P (G3WPH) 47,817
TA1BM 18,864
JM4WUZ 275
VA3HY 224
K5ND 80

21 MHz

HG3DX (HA1DAE)	
HI6M149,940	
YB1IUQ3,737	
LN50 (LB3RE)1,066	
GW0EGH77	

14 MHz

SF0A (SM0LPO)48,818
ON4BHQ46,552
HI3K28,512
MOPLA
404A15,568
IZ2QKG2,340
RA5W924
YC3AVB209

7 MHz

IZ3KNK																					4	2	,	62	24	1
K4XL	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	7	,	98	3 ()
VA3TSS																						5	,	9	92	2
YD3ASV	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33	36	ŝ

3.5 MHz

UT3N (UT3NK)10,878 VA3OGG.....5,472

MULTI-OP

SINGLE-TRANSMITTER

HIGH POWER

IP4M		 	 			 	6,	369,	,766
IB9T		 	 			 	5,	782,	403
OK5Z		 	 			 	5,	731,	,744
ок7о	•	 	 			 	5,	356,	,287
S51A	•	 	 			 	4,	180,	,195
IB9R		 	 			 	4,	045,	,056
NV9L		 	 			 	З,	984,	,620
NA7TB.	•	 	 			 	З,	941,	,712
DP6A	•	 	 			 	З,	924,	,789
HG7T	•	 	 	• •	• •	 	З,	867,	,116

LOW POWER

IQ6AN
NP3Y5,795,643
IO3F3,494,329
VE3EID3,063,676
KA4RRU2,842,616
N4SS2,213,517
ES7A1,972,905
NM4AA1,810,570
9A1HBC1,331,034
LZ8T1,152,432

MULTI-OP TWO-TRANSMITTER

CR3DX17,387,300
EI7M10,160,620
NJ4P8,969,466
К9СТ8,568,228
PI4COM7,155,795
UW5Y6,767,580
ED2Y6,071,264
OH5Z5,814,920
DQ2C5,173,776
S50W5,114,928

MULTI-OP

MULTI-TRANSMITTER

	 	 _	 _	
CR3W.	 	 	 	 .14,877,234
9A1A.	 	 	 	 .12,938,096
IQ9RG.	 	 	 	 9,848,748
K1SFA.	 	 	 	 8,999,576
DP9A.	 	 	 	 8,168,116
A60A.	 	 	 	 4,676,040
PI4CC.	 	 	 	 4,178,790
W3GH.	 	 	 	 4,158,916
DM4X.	 	 	 	 3,998,210
N6WM.	 	 	 	 3,880,226

ROOKIE

HIGH POWER

IP00 (DM1KM. IV3JAK WB5SKM YB7UFI OM1BC. DL4JC. YF3AQV	IU0	PVM)	2	,204,400 .306,880 .175,168 .169,442 67,850 17,325 8,880 8,083
YF3AQV YC3BWK		• • • • •	 	8,083 4

LOW POWER

OM2ADM.	 	 	 .2,265,165
K1DC	 	 	 .1,334,807
DM1SV	 	 	 301,063
LU2PWY.	 	 	 226,096
M7WLT	 	 	 180,978
SA6JOF.	 	 	 141,540
AC1PK	 	 	 140,304
DK4CN	 	 	 95,407
OE5HMR.	 	 	 90,134
PY1WK	 	 	 69,472

CLASSIC

HIGH POWER

HIGH FONDIC
ED8M (EA8BW) 2,073,812
KI6DY 1,941,271
YT3D 1,885,000
RW1A 1,688,200
AE1P 1,614,588
WQ5L 1,393,938
EU8U 1,293,200
PCOA 1,253,159
I4JED 1,081,439
LU6ETB 916,839
LOW POWER
LOW POWER
LOW POWER 0N4CT 1,124,848 EA3CI
LOW POWER ON4CT
LOW POWER ON4CT
LOW POWER ON4CT
LOW POWER ON4CT 1,124,848 EA3CI 1,020,513 KG9X 980,287 VA1XH 821,431 JH7QXJ 782,673 La5LJA 726 012
LOW POWER ON4CT
LOW POWER ON4CT 1,124,848 EA3CI 1,020,513 KG9X 980,287 VA1XH 821,431 JH7QXJ 782,673 LA5LJA 726,012 4U1A (CE1ZZZ) 668,265 9U1CC 657,305
LOW POWER ON4CT 1,124,848 EA3CI 980,287 VA1XH 821,431 JH7QXJ 782,673 LA5LJA 726,012 4U1A (OE1ZZZ) 668,265 9H1CG 627,305
LOW POWER ON4CT, 1,124,848 EA3CI, 1,020,513 KG9X, 980,287 VA1XH, 821,431 JH7QXJ, 782,673 LA5LJA, 726,012 4U1A (OE1ZZZ), 668,265 9H1CG, 657,305 NN5T, 625,911 VK7NVU, 625

YOUTH

HIGH POWER

9A2ZI.						•								•	2	,	1	3	2,	, :	31	LO	l
KI7PPV														•				8	5,	, 1	07	75	
SQ8L																			9,	, !	52	2 0	I
HB9GZJ		•	•	•	•	•	•	•	•	•	•	•	•	•		•			•	•	37	78	

LOW POWER

DJ4MX	2,285,852
WT5A	409,366
YOSOLY	264,864
N4ML	245,313
SV8SYK	142,352
M9B (M0LKW)	
KFORBR	24,794
YF2AZV	22,713
YU2NPC	21,142
BI1NEI	

EXPLORER

SINGLE-OP HIGH POWER

RG9A3,683,082
SP5LST1,828,128
S53K1,373,922
OH8GB0204,368
VU2ZMK
YE3FZR

EXPLORER

MULTI-OP HIGH POWER

S04R	 2,319,835
EA4URE	 1,666,412
IQ3PN	 969,474
PI4X	 337,029